DEGENERATIONS OF RICCI-FLAT CALABI–YAU MANIFOLDS
نویسندگان
چکیده
منابع مشابه
Conformally Flat Manifolds with Nonnegative Ricci Curvature
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
متن کاملRicci-flat Deformations of Asymptotically Cylindrical Calabi–yau Manifolds
We study a class of asymptotically cylindrical Ricci-flat Kähler metrics arising on quasiprojective manifolds. Using the Calabi–Yau geometry and analysis and the Kodaira–Kuranishi–Spencer theory and building up on results of N.Koiso, we show that under rather general hypotheses any local asymptotically cylindrical Ricci-flat deformations of such metrics are again Kähler, possibly with respect t...
متن کاملThe Structure of Compact Ricci-flat Riemannian Manifolds
where k is the first Betti number b^M), T is a flat riemannian λ -torus, M~ is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of fixed point free isometries of T x M' of a certain sort (Theorem 4.1). This extends Calabi's result on the structure of compact euclidean space forms ([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to essentiall...
متن کاملConformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds
The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...
متن کاملRicci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds
of the Dissertation Ricci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds by Evan Patrick Wright Doctor of Philosophy in Mathematics Stony Brook University 2013 A classification result for Ricci-flat anti-self-dual asymptotically locally Euclidean 4-manifolds is obtained: they are either hyperkähler (one of the gravitational instantons classified by Kronheimer), or a cyclic quo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2013
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199712500575